
A Parallel Genetic Algorithm for Generalized
Vertex Cover Problem

Drona Pratap Chandu

Amazon Development Centre India,
Chennai, India

Abstract— This paper presents a parallel genetic algorithm
for generalised vertex cover problem(GVCP) using Hadoop
Map-Reduce framework. The proposed Map-Reduce
implementation helps to run the genetic algorithm for
generalized vertex cover problem(GVCP) on multiple
machines parallely and computes the solution in relatively
short time.

Keywords— Parallel genetic algorithm,generalized vertex
cover problem.Map-Reduce.GVCP.

I. INTRODUCTION

The vertex cover problem (VCP) for undirected graph
G=(V,E) is to find find a subset S of V such that for each
edge e in E at least one of end points of e belongs to S and
|S| is as small as possible. VCP was proved as a NP-
complete problem by Karp[5] in 1972. There are many
variants of generalized vertex cover problem. In this paper
generalized vertex cover problem formulated by Hassin
and Levin[1] is considered. Marija[2] proposed a genetic
algorithm for the generalized vertex cover problem
proposed by Hassin and Levin[1].

 This paper presents a parallel implementation of
genetic algorithm for generalized vertex cover problem
(GVCP) using Hadoop Map-Reduce framework. The
proposed Map-Reduce implementation helps to run the
genetic algorithm for generalized vertex cover problem on
multiple machines parallely and computes the solution in a
relatively short time.

II. OBJECTIVE FUNCTION

Let G = (V,E) be an undirected graph. For every edge e
∈ E three numbers d0(e) ≥ d1(e) ≥ d2(e) ≥ 0 are given and
for every vertex v ∈ V a number c(v) ≥ 0 is given.

For a subset S ⊆ V denote S1 = V \S, E(S) is the set of
edges whose both end-vertices are in S, E(S,S1) is the set of
edges that connect a vertex from S with a vertex from S1,
c(S) = Σc(v), and for i = 0, 1, 2 di(S) = Σdi(e) and di(S, S1)
= Σdi(e) e∈E(S,S1). The generalized vertex cover problem
is to find a vertex set S ⊆ V that minimizes the cost c(S) +
d2(S) + d1(S, S1) + d0(S1).

Example 1. Let G=(V,E) with V={1,2,3,4} and E=
{(1,2),(1,3),(1,4),(2,3),(3,4)} be the given graph, costs
associated with vertices are {10,20,30,40} and costs
associated with edges (d0,d1,d2) are given by
{(50,30,20)(40,4030)(50,20,20)(30,20,10)(20,20,20)}.

The optimal objective value in this example is 150 and
the optimal vertex cover {1} consists of only one vertex.
The corresponding vertex cost c(S) = c(1) = 10 and the

edge costs are d1(S, S1) = d1(1, 2) + d1(1, 3) + d1(1, 4) =
30 + 40 + 20 = 90,d0(S1) = d0(2, 3) + d0(3, 4) = 30 + 20 =
50 and d2(S) = 0.

III. HADOOP MAP-REDUCE

Map-Reduce is a programming model developed by
Dean and Ghemawat[3] for writing highly scalable parallel
programs. User of Map-Reduce framework have to
implement two functions map and reduce. The programs
written in the Map-Reduce style is automatically
parallelized by Map-Reduce run time system. Scheduling,
distributing, aggregation of the results and failure recovery
was automatically handled by Map-Reduce runtime system.
Apache is providing an open source implementation of
Map-Reduce as a part of its Hadoop project[4].

Figure 1 . Hadoop Map-Reduce

The map method takes a key value pair as input and
emits key value pairs as output. The output key value pairs
of map functions running on multiple mapper machines is
collected by runtime system and it sort them and group
them according to key value. Then it passes a key and list
of values corresponding to that key to reduce function. The
reduce function process the given (key ,values list) and
outputs (key ,value) pair. Map operations and reduce
operations are distributed among several machines in
Hadoop Cluster as shown in Figure 1. Many real world
problems can be solved using Map-Reduce model.

IV. A GENETIC ALGORITHM FOR GENERALISED VERTEX

COVER PROBLEM (GVCP)
Holland[6] proposed genetic algorithms(GAs) and have

been applied to many optimization problems and are
proven to be efficient in finding globally optimal solutions.
GAs are computational models inspired by evolutionary
theory. Genetic algorithms(GA) begins with a random

Drona Pratap Chandu / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7686-7689

www.ijcsit.com 7686

sample of chromosomes where each chromosome
represents a solution to the given problem. GA repeatedly
applies operators like selection,mutation,crossover that
resemble a process of natural evolution to create next
generation from selected population of current generation.

GA proposed by Marija[2] can be summarized as below
1. Create Z random individuals including four

special individuals.
2. Compute fitness of individuals in current

generation.
3. Select E individuals with high fitness and add

them to next generation.
4. Select Z-E pairs of individuals and apply cross

over , mutation operations on selected individuals
to produce a pair of child individuals in the next
generation.

5. Repeat steps 2 to 4 for desired number of times.
6. Returns best solution in the last generation

The elements of GA proposed by Marija[2] are
described below.
A. Encoding

Let (V1,V2,... Vn) be the labels of vertices in the given
graph. Each solution to GVCP is represented by a binary
code of length |V|. Digit 1 in Kth position of a binary code
indicates the vertex Vk is in the solution. Digit 0 in the Kth
positon of binary code indicates the vertex Vk is not in the
solution. The solution represented by binary code B is set
of vertices Vi such that ith bit in B is 1.
Example 2. Let the binary code BC is 0001 for a graph
with vertices {V1,V2,V3,V4}, the solution S represented by
BC is {V4}.
B. Population Initialisation

Initial population is randomly created such that
diversity is maximal. Every individual is a random binary
string of length |V|.
C. Selection

 Best E individuals having higher fitness are selected
as elitism which directly proceed into the next generation.
To generate remaining population (Z - E) parents are
selected into the mating pool using fine grained
tournament selection described in [7] with desired average
tournament size tSize. Tournament with size floor(tSize) is
held K1 times and tournament with size ceil(tSize) is held
K2 times such that overall average tournament size is
closer to tSize. In each round, it selects K1 or K2 different
individuals from population. One of the selected
individuals is added to the mating pool according to
probability distribution based on fitness.
D. Crossover

To create next generation individuals, crossover and
mutation operation is applied on randomly selected two
individuals from mating pool. The standard one point
crossover is used . Crossover is performed by exchanging
segments of two parents genetic codes from a randomly
chosen cut point and cross over is performed with
probability

PCROSS = 0.85.
E. Mutation

Mutation changes a randomly selected gene in the
individual with certain mutation rate. When all the

individuals have same gene on certain position , the gene
can't changed by crossover and selection operators. The
gene is called frozen. Mutation rate of froze gene is (1.0/N)
and of non-frozen ones is (0.4/N).
F. Local search around best individual

The proposed genetic algorithm use local search around
best individual in the current generation to improve the best
individual. The local search is performed by using
add/remove heuristic with first improvement, that usually
outperforms best improvement heuristic.

In more detail, for each ch ∈ {1, 2,. . . , |V |}, local
search tries to complement S[ch] to 1−S[ch]. If that brings
improvement to the objective value, the change is
performed. That process is repeated until there is no
improvement in some iteration, and the last objective value
is declared as final objective value.

V. IMPLEMENTATION USING MAP-REDUCE
The proposed model requires to run the Map-Reduce

iteratively. Each iteration takes population of one
generation as input and applies necessary evolutionary
operators during Map-Reduce to produce the next
generation as output. Only one mapper is used and number
of reducers can be increased to compute the solution
quickly. Overall process can be summarised as follows

1. Create initial population.
2. Compute fitness of each chromosome in the

initial population.
3. Run Map-Reduce with (solution,fitness) as input.
4. Collect output (solution,fitness) pairs of reduce

phase.
5. Repeat steps 3 to 4 using output collected in step

4.
6. Output the solution with best fitness in last

iteration.
Map function receives (solution,fitness) pairs as input.

During Map phase precomputed fitnesses of solutions are
used to select the solutions by tournament selection.
Solutions and their fitnesses are stored in buffer until all
chromosomes are received by Map. Solutions are sorted by
fitness and E solutions having best fitness are added to next
generation without applying evolutionary operators. For
these elite E chromosomes map function outputs a pair of
chromosomes first one is current chromosome in the elite E
and second is empty string representing illegal
chromosome.

To generate the rest of the population of next generation,
pairs of chromosomes are selected and emitted as output to
be used by the reduce phase. The pairs of chromosomes
generated by map function are used as parent chromosomes
by reduce function to produce next generation
chromosomes.

During the reduce phase evolutionary operators are
applied to generate child chromosomes from pair of
chromosomes emitted by map phase. When reduce function
receives a pair of chromosomes with second chromosome
is illegal, reduce just emits the first chromosome and its
fitness as output. Best Match Heuristic Packaging
Procedure presented in section V is used to compute the
fitness of solutions. When reduce function receives a pair

Drona Pratap Chandu / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7686-7689

www.ijcsit.com 7687

of two legal chromosomes, it applies crossover operator to
produce two child chromosomes. Then mutation operator is
applied over two child chromosomes. The reduce emits
(solution,fitness) pairs as output .

In the proposed implementation selection of
chromosomes to be added to mating pool runs on single
machine as it is configured to have only machine in the
map phase. But the process of selection is just picking
random numbers and emitting corresponding
chromosomes as output and it's execution time is small.

Fitness computation operations,crossover operations,
and mutation operations are distributed among all the
machines in in reduce phase. This parallel implementation
can compute vertex cover in a relatively short time as it
runs parallely on multiple machines and running time
decreases as the number of machines in reduce phase are
increased.

Implementation of Mapper using Java programming
language is shown in Figure 2.

Implementation of Reducer using Java programming

language is shown in Figure 3.

The Map-Reduce execution is repeated until

convergence condition is satisfied. Output of reduce phase
in current iteration is used as input to map phase of next
iteration. In every iteration one new generation is created.
The best computed solution is represented by best
individual in the last generation.

VI. CONCLUSIONS
This paper presents a parallel genetic algorithm for

generalized vertex cover problem using Hadoop Map-
Reduce framework. In this implementation fitness
computation operations,crossover operations, and mutation
operations are distributed among all the machines in
Hadoop cluster running reduce phase. This parallel
implementation provides a method to compute vertex
cover in a relatively short time by running parallely on
multiple machines and running time decreases as the
number of machines in Hadoop cluster running reduce
phase are increased.

package ParallelGVCP;
import java.io.IOException;
import java.util.Arrays;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;

public class GVCPMapper extends MapReduceBase implements

Mapper<Text, DoubleWritable,Text, Text>
{ int populationSize = 150;
 int processedItems = 0;
 double[] fitnessVector = new double[populationSize];
 String population[] = new String[populationSize];
 Text parentOne = new Text("");
 Text parentTwo = new Text("");
 private int E = 50;

 @Override
 public void map(Text key, DoubleWritable value,OutputCollector<Text,

Text> outputCollector, Reporter reporter) throws IOException
 { population[processedItems] = key.toString();
 fitnessVector[processedItems]= value.get();
 processedItems++;
 if(processedItems == populationSize)
 { MapHelper.sortSolDescendingByFitness (population,fitnessVector);
 population[0] = MapHelper.localSearch(population[0]);
 parentTwo.set("");

 for(int i=0;i<E;i++)
 { parentOne.set(population[i]);
 outputCollector.collect(parentOne, parentTwo);
 }
 for(int i=0;i < populationSize - E;i++)
 { String par1 = MapHelper.selectRandom (population,fitnessVector);
 String par2 = MapHelper.selectRandom (population,fitnessVector);
 parentOne.set(par1);
 parentTwo.set(par2);
 outputCollector.collect(parentOne, parentTwo);
 }
 processedItems = 0;
 Arrays.fill(population, null);
 }
 }
}

Figure 2. Implementation of Mapper using Java

package ParallelGVCP;
import java.io.IOException;
import java.util.Iterator;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;

public class GVCPReducer extends MapReduceBase implements

Reducer<Text, Text, Text, DoubleWritable>
{ private Text outputKey = new Text();
 private DoubleWritable outputValue = new DoubleWritable();

 @Override
 public void reduce(Text solution, Iterator<Text> solution2,
 OutputCollector<Text, DoubleWritable> results, Reporter reporter)

throws IOException
 { String parent1 = solution.toString();
 String parent2 = solution2.next().toString();
 String child1 = null;
 String child2 = null;
 if(parent2.length() == 0)
 { child1 = parent1;
 } else
 { int cutpoint = (int) (Math.random() * parent1.length());
 child1 = ReduceHelper.firstChildByCrossover

(parent1,parent2,cutpoint);
 child2 = ReduceHelper.secondChildByCrossover(parent1,

parent2,cutpoint);
 child1 = ReduceHelper.mutate(child1);
 child2 = ReduceHelper.mutate (child2);

 }
 double fitness = ReduceHelper.computeFitness (child1);
 outputKey.set(child1);
 outputValue.set(fitness);
 results.collect(outputKey, outputValue);

 if(child2 != null){
 fitness = ReduceHelper.computeFitness (child2);
 outputKey.set(child2);
 outputValue.set(fitness);
 results.collect(outputKey, outputValue);
 }
 }
}

Figure 3. Implementation of Reducer using Java

Drona Pratap Chandu / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7686-7689

www.ijcsit.com 7688

ACKNOWLEDGEMENT
I would like to thank all my colleagues at Amazon India

Development Centre, my colleagues at Freescale
Semiconductor for their participation in long discussions
with me and all my classmates at Indian Institute of
Technology Roorkee who used to participate in
discussions with me.

REFERENCES

[1] Hassin, R.—Levin, A.: The Minimum Generalized Vertex
Cover Problem. ACM Transactions on Algorithms, Vol. 2,
2006, pp. 66–78.

[2] Marija Milanovic, Solving The Generalized Vertex Cover
Problem by genetic algorithm,Computing and Informatics,
Vol. 29, 2010, 1251–1265

[3] Jeffrey Dean and Sanjay Ghemawat : Map-Reduce:
Simplified Data Processing on Large Clusters. In
Proceedings of the 6th USENIX Symposium on Operating
Systems Design and Implementation 2004, 137-149.

[4] http://hadoop.apache.org/
[5] Karp, R.M.: Reducibility Among Combinatorial Problems.

Complexity of Computer Computations, Plenum Press,
1972, pp. 85–103.

[6] J. H. Holland, Adaptation in Natural and Artificial Systems.
Ann Arbor, MI: Univ. of Michigan Press, 1975.

[7] Filipovi´c V,Kratica J,oˇsi´c, D.—Ljubi´c, I. Fine Grained
Tournament Selection for the Simple Plant Location
Problem. Proceedings of the 5th OnlineWorld Conference
on Soft Computing Methods in Industrial Applications
WSC5, September 2000, pp. 152–158.

AUTHOR

Drona Pratap Chandu received Master of Technology in Computer
Science and Engineering from Indian Institute of Technology Roorkee,
India. He worked as software engineer at Freescale semiconductor India
and also he worked as software development engineer at Amazon
development centre India recently .

Drona Pratap Chandu / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7686-7689

www.ijcsit.com 7689

